

SOH-CAH-TOA

Angle $=$ Inverse $\operatorname{Sin}(\mathrm{O} / \mathrm{H})$
$\mathrm{O}=\mathrm{H}^{*} \operatorname{Sin}($ angle $)$
$\mathrm{H}=\mathrm{O} / \operatorname{Sin}($ angle $)$

Sin is short for Sine Use when no A

Angle $=$ Inverse $\operatorname{Cos}(\mathrm{A} / \mathrm{H})$
$\mathrm{A}=\mathrm{H}^{*} \operatorname{Cos}($ angle $)$
$\mathrm{H}=\mathrm{A} / \operatorname{Cos}($ angle $)$
Cos is short for Cosine Use when no O

Angle $=$ Inverse $\operatorname{Tan}(\mathrm{O} / \mathrm{A})$
$\mathrm{O}=\mathrm{A} * \operatorname{Tan}($ angle $)$
$\mathrm{A}=\mathrm{O} / \operatorname{Tan}($ angle $)$
Tan is short for Tangent Use when no H

TOTAL FALL / DISTANCE / GRADE

Iotal Fall in inches Distance in feet Grade in fraction of an inch

Iotal Fall in feet
Distance in feet Grade in percentage

PSI / TOTAL FORCE

Perimeter, Area, Volume, and Length Constants

6.24 imp gallons in a cubic foot
7.48 US gallons in a cubic foot
220.33 imp gallons in a cubic meter
264.39 US gallons in a cubic meter
4.546 litres in an imp gallon
3.785 litres in a US gallon

1 cubic inch of water weighs 0.0361 lbs
1 imp gallon of water weighs 10 lbs
1 US gallon weighs 8.327 lbs
1 cubic foot of water weighs 62.4 lbs
1 cubic meter of water weighs 2203.3 lbs
1 imp gallon = 1.2 US gallons
1 imp gallon of water $=277$ cubic inches
1 US gallon = 231 cubic inches
1 pound (lb) $=0.455 \mathrm{~kg}$
$1 \mathrm{Kg}=2.2$ pounds (lbs)
1 foot head of water $=0.433$ PSIG
1 meter head of water $=1.42$ PSIG
2.31 foot head of water $=1 \mathrm{PSIG}$
0.704 meter head of water $=1 \mathrm{PSIG}$

1 atmosphere $=14.73$ PSIA absolute
1 inch of mercury $=0.491$ PSIG
$1 \mathrm{PSI}=2.035$ inches of mercury
$1 \mathrm{PSI}=28$ inches of water column
1 atmosphere $=29.92$ inches of mercury
1 inch $=2.54 \mathrm{~cm}$
1 foot $=30.48 \mathrm{~cm}$
3.28 feet $=1 \mathrm{~m}$

1 square foot = 144 square inches
1 square foot $=929.03$ square centimeters
1 cubic foot $=1728$ cubic inches
1 cubic foot $=0.0283$ cubic meters
1 square meter $=10.76$ square feet
1 cubic meter $=35.31$ cubic feet

Trigonometry Constants

$22.5^{\circ}-$ Travel $=$ Offset $\times 2.613$
22.5° - Travel $=$ Advance $\times 1.08$
22.5° - Advance $=$ Offset $\times 2.41$
22.5° - Advance $=$ Travel $\times 0.924$
45° - Travel $=$ Offset or Advance $\times 1.414$
45° - Offset or Advance $=$ Travel $\div 1.414$
$45^{\circ}-$ Step ahead $=$ Spread $\times 0.414$
60° - Travel $=$ Offset $\times 1.155$
$60^{\circ}-$ Travel $=$ Advance $\times 2$
$60^{\circ}-$ Advance $=$ Offset $\times 0.58$
$60^{\circ}-$ Advance $=$ Travel $\times 0.5$
$60^{\circ}-$ Offset $=$ Advance $\times 1.73$
$60^{\circ}-$ Offset $=$ Travel $\times 0.87$
$60^{\circ}-$ Step ahead $=$ Spread $\times 0.58$

BTU Constants

0.53 BTU's to raise 1 lb of ice 1 degree
0.48 BTU 's to raise 1 lb of steam 1 degree 1 BTU to raise 1 lb of water 1 degree 144 BTU's for latent heat of fusion 970.4 BTU's for latent heat of vaporization 1 BTU-1.055 Kilojoules

Formulas

Volume of a cylinder $=D^{2} \times 0.7854 \times H$
Area of a cylinder or pipe $=\pi \times D \times H$
Area of a cylinder and ends $=(\pi \times D \times H)+\left(2 \times D^{2} \times 0.7854\right)$
Area of a circle $=D^{2} \times 0.7854$ or $\pi \times R^{2}$
Volume of a cube $=L \times W \times H$
Area of a square $=L \times W$
Area of a cube $=6 \times(\mathrm{L} \times \mathrm{W})$
Area of a triangle $=1 / 2$ base $\times \mathrm{H}$
Circumference $=\pi \times D$
Perimeter of a square or rectangle $=\mathrm{L} \times 2+\mathrm{W} \times 2$
Perimeter of any other shapoe $=$ total length of all sides added together Imperial gallons in a cylinder $=D^{2} \times 0.7854 \times H \times 6.24$ with dimensions in feet US gallons in a cylinder $=\mathrm{D}^{2} \times 0.7854 \times \mathrm{H} \times 7.48$ with dimensions in feet Imperial gallons in a cylinder $=\mathrm{D}^{2} \times 0.7854 \times \mathrm{H} \times 220.33$ with dimensions in meters
US gallons in a cylinder $=D^{2} \times 0.7854 \times H \times 264.39$ with dimensions in meters
Fahrenheit to Celsius $-\mathrm{C}^{\circ}=\left(\mathrm{F}^{\circ}-32\right) \div 1.8$
Celsius to Fahrenheit $-\mathrm{F}^{\circ}=\left(\mathrm{C}^{\circ} \times 1.8\right)+32$
Linear Expansion $=$ length \times temperature differential \times C.O.E. (co-effecient of expansion)
PSI $=$ Height in feet $\times 0.433$
PSI $=$ Height in meters $\times 1.42$
Total force $=$ Area \times Pressure
Right angle triangles $=A^{2}+B^{2}=C^{2}$

$$
\begin{aligned}
& A=\sqrt{C^{2}-B^{2}} \\
& B=\sqrt{C^{2}-A^{2}} \\
& C=\sqrt{A^{2}+B^{2}}
\end{aligned}
$$

